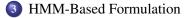


Pronunciation Lexicon Development for Under-Resourced Languages Using Automatically Derived Subword Units: A Case Study on Scottish Gaelic

Marzieh Razavi, Ramya Rasipuram and Mathew Magimai. Doss


28 November 2015

2 Background

4 Experimental Studies

Marzieh Razavi Idiap Research Institute

• • • • • • •

Motivation

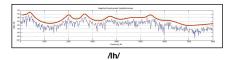
Marzieh Razavi Idiap Research Institute

・ロト ・四ト ・日ト ・日ト

æ

Speech Technology Systems

- Standard speech technology systems model words as a sequence of subword units.
- Using subword units necessitates availability of two resources:
 - The subword unit set.


•
$$\mathcal{A} = \{a^1, \cdots, a^d, \cdots, a^D\}$$

2 The Lexicon mapping each word to a sequence of subword units.

Motivation

Lexical Resources

- The most commonly used subword units: Phones
 - Linguistically motivated units: /f/, /p/, /b/, ···
 - Spectral envelope depicts the characteristics of phones.

• The phonetic lexicon provides the phonetic representation of words.

phone \rightarrow /f/ /ow/ /n/ map \rightarrow /m/ /ae/ /p/ \dots

- Typically developed manually.
- Augmented using grapheme-to-phoneme (G2P) conversion approaches.
- Require linguistic knowledge & human expertise.

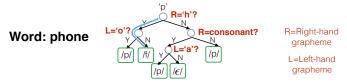
Lexicon Development for Under-Resourced languages

- Majority languages have well-developed lexicons.
- Under-resourced languages may lack proper lexical resources.
 - Examples: Uspanteko, Haitian Creole, ...
 - Linguistic knowledge and human expertise may be very limited.
 - \Rightarrow Conventional approaches cannot be exploited.

A possible solution

Automatically derive "phone-like" subword units and generate associated pronunciations using transcribed speech data.

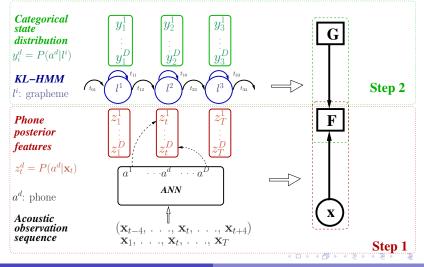
Background

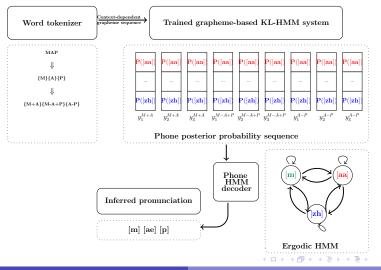

Marzieh Razavi Idiap Research Institute

ヘロト 人間 とくほ とくほ とう

æ

G2P Conversion

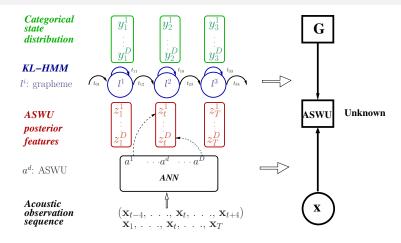

- Conventional Data-Driven G2P approaches:
 - Assumes the availability of a *seed lexicon* obtained using linguistic knowledge and expertise.
 - Apply machine learning techniques to learn the G2P relationship.


- Acoustic data-driven G2P conversion approach:
 - Assumes some speech data in addition to the seed lexicon is available.
 - G2P relationship is learned through acoustics.

< **∂** > < **≥** >

Acoustic G2P Conversion Approach (I): Learning the G2P Relationship Using Acoustics

Acoustic G2P Conversion Approach (II): Pronunciation Inference Given the Learned G2P Relation

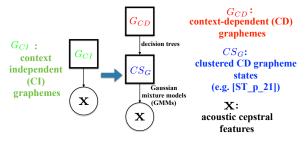


HMM-Based Formulation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Formulating the Problem

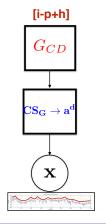


{a^d}^D_{d=1} are automatic subword units (ASWUs) and unknown.
Once {a^d}^D_{d=1} discovered, apply the acoustic G2P conversion approach.

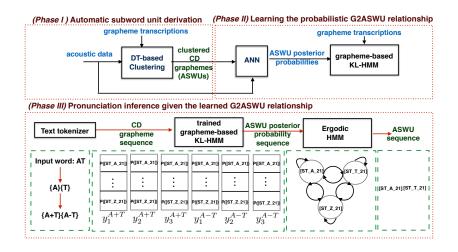
A (B) > A (B) > A (B) >

Standard HMM-based ASR

- Context-dependent (CD) subword units are modeled with HMMs with mixture of Gaussian state-output distributions.
- e.g. iphone → [i] [p] [h] [o] [n] [e] → [i+p] [i-p+h] [p-h+o] [h-o+n] [o-n+e] [n-e]


- Data sparsity issue
- Clustering and tying (parameter sharing) using decision trees:
 - maps each G_{CD} to a CS_G

• □ > • □ > • □ > • □ > • □ >


Derivation of Automatic Phone-Like Subword Units

Hypothesis: The clustered CD grapheme states CS_G can be treated as phone-like automatic subword units a^d .

- Cepstral feature **x** carries phone-like information.
- G_{CD} tends to relate to a phone in a regular manner.
 - Example: G_{CI} [p] \rightarrow /p/ , /f/ G_{CD} [p+h] \rightarrow /f/
- *CS_G* is found by maximizing the likelihood of the data.
- CS_G relates to both **x** and G_{CD} .
- \Rightarrow *CS*_{*G*} should be phone-like.

Block Diagram of ASWU Derivation and Pronunciation Generation

э

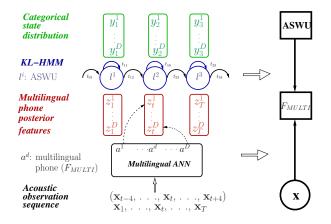
Experimental Studies

◆□ > ◆檀 > ◆理 > ◆理 > -

Э

Scottish Gaelic

- Low-resourced and minority language; Endangered with only 60,000 speakers.
- Alphabet has 18 letters, consisting of 5 vowels and 13 consonants.
- There are 12 basic consonant types in Scottish Gaelic:
 - fortis or lenis: a grapheme [h] next to the consonant.
 - broad or slender : surrounded by ([a], [o], [u]) or ([e], [i])
- Number of graphemes is greater than number of phonemes in word.
 - an-diugh \rightarrow /ə/ /n/ / d^{j} / /u/
 - aghaidh \rightarrow / γ : ./ /I/


(日本) (日本) (日本)

Under-Resourced Language Study: Scottish Gaelic

- Corpus was collected by the University of Edinburgh.
- Recordings from broadcast news and discussion program.
- Use transcribed speech data for subword unit derivation and pronunciation generation.

Corpus	Lexicon size (in words)	# of grapheme subword units	Training data	Test data
Scottish Gaelic	5082	31	180 (min) (22 speakers)	60 (min) (12 speakers)

Relating ASWUs to Phonetic Units

- No phonetic lexicon available.
- Exploit auxiliary linguistic resources from other languages.

< 3 > <

Analysis of ASWU-based Pronunciations

- Map each ASWU to most probable multilingual phone.
- Provide the 'perceived' pronunciations for each word through informal hearing.

Word	Lex-ASWU-82	mapped pron.	perceived pron.
MHÀL	[ST_B_22] [ST_À_21] [S_L_23]	/v/ /a/ /1/	/v/ /a/ /1/
THO G	[ST_T_21] [ST_O_23] [ST_G_23]	/h/ /o/ /k/	/h/ /O/ /g/
PHÒ S	[ST_F_21] [ST_Ò_21] [ST_S_23]	/f/ /o/ /s/	/f/ /o/ /s/

• The ASWU-based pronunciations to a certain extent capture the linguistic rules related to pronunciations.

ASR Study

System	# of units	# of tied states	WA
HMM-GMM-GRAPH	32	1158	64.6
HMM-GMM-ASWU	82	1161	66.4

- HMM-GMM-GRAPH : Grapheme-based ASR
- HMM-GMM-ASWU : Proposed approach
- The ASWU-based lexicon yields a significantly better ASR system than the grapheme-based lexicon.

Summary

- Proposed an HMM formalism to derive phone-like subword units and generate associated pronunciations.
- The formalism is scalable to under-resourced languages.
- Investigated the potential of ASWUs for developing linguistically meaningful lexicons.
- Interpreted ASWUs in terms of linguistic units by exploiting auxiliary languages resources and prior linguistic knowledge.

(日本) (日本) (日本)

Thank You

ъ

◆□▶ ◆御▶ ◆臣▶ ◆臣▶