

TEXT FILTERING FOR SPANISH

Enrique Puertas Sanz Universidad Europea de Madrid

Contents

- Goals
- Scientific approach
- Design and implementation
- Current results

Goals

- Effective filtering of Spanish text dealing with
 - Pornography
 - Gross language
- Two level filtering (efficiency-driven)
 - Light filtering
 - Heavy filtering

Contents

- Goals
- Scientific approach
- Design and implementation
- Current results

- Light filter pornography
 Statistical text processing
 - - Very shallow text analysis
 - Machine Learning
 - High accuracy on "easy" text
 - Efficient

- Light filter pornography (details)
 - Very shallow text analysis
 - Basic tokenization
 - Isolating words using separators (space, EOL, etc.)
 - Stop list filtering
 - Filtering out very common words (e.g. Prepositions)
 - Stemming
 - Basic morphology ("analysis", "analyser" \rightarrow "analy")
 - Binary text representation
 - Weight vector (e.g. "sex" occurs \rightarrow sex has weight 1)

- Light filter pornography (details)
 Machine Learning
 - Filtering tokens with Information Gain
 - Retaining 1% top scoring word stems
 - Support Vector Machines (SVM) & regression
 - SVM linear model
 - -1.99 * sex 0.35 * porn + ... > 0 \rightarrow safe
 - Logistic regression
 - » Obtain class probabilities by fitting the model

- Light filter gross language
 - Swear words in 3 groups (low, med, high)
 - Extracted from the Official Spanish Language dictionary (DRAE), stemmed
 - Operation
 - If any high swear word occurs \rightarrow score high
 - else if any med swear word occurs → score high ...

- Heavy filter pornography
 - More advanced text processing
 - Shallow text analysis with some NLP
 - Machine Learning (as in light filtering)
 - Better accuracy on "difficult" text
 - Less efficient

- Heavy filter pornography (details)
 Shallow text analysis with some NLP
 - Previous approach plus more indicative indexing units
 - Noun Phrases recognition
 - Named Entities recognition ("Pam Anderson" vs. "Bill Gates")

- Heavy filter pornography (details)
 - Noun Phrases recognition (3 phases)
 - 1. Part-Of-Speech tagging training data
 - "el perro come" \rightarrow "el_det perro_n come_v" where det = determiner, n = noun, v = verb (simplified)
 - Maximum Entropy with MXPOST package 95+% accuracy)
 - Trained on the CRATER corpus (news text)

- Heavy filter pornography (details)
 - Noun Phrases recognition (3 phases)
 - 2. Noun phrases (NPs) as regular expressions
 - E.g. np = det n adj ("el_det niño_n listo_adj")
 - 3. NP normalization (avoiding tagging incoming text MXPOST not GPL'ed)
 - Stop list, stemming and ordering
 - $\quad \text{E.g. "el niño listo"} \rightarrow \text{"list niñ"}$

- Heavy filter pornography (details)
 - Named Entities recognition
 - As defined in Computational Natural Language Learning (CONLL) 02/03 workshops
 - Named entities = phrases with names of persons, organizations, locations, times and quantities
 - E.g. [PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].
 - We partly follow the approach by 02 top performers (Carreras *et al.*)

Scientific approach

- Heavy filter pornography (details)
 Named Entities recognition
 - A selection of Carreras text features
 - Focus word capitalization, punctuation marks, etc
 - A number of Machine Learning algorithms

- Naive Bayes, SVM, kNN, etc.

Trained on CONLL Spanish corpora (news text)

- Heavy filter gross language
 - Same swear words groups as in light filter
 - Weight vector (3 = high, 2 = med, etc.)
 - Cosine similarity with text input weight vector $\in [0,1] \rightarrow score$

Contents

- Goals
- Scientific approach
- Design and implementation
- Current results

Design and implementation

- Coded in Java
- Third party (Java) libraries
 - WEKA (learning)
 - HTMLParser (text extraction)
 - Muffin (filtering test)
 - MXPOST (POS-Tagging training data)
- Available at
 - PoesiaSoft/TextFilter/Spanish

Design and implementation

- Package overview
 - indexer (core) indexing, training
 - gross gross language
 - ner Named Entity recognition
 - filter filtering utils (testing)
 - html2Text HTML processing and bot
 - main the filters

Design and implementation

- Statistics
 - Code
 - 50 classes (300 Kb.)
 - 10 data files (10 Mb.)
 - Corpus
 - 35k html files (29k vs. 6k)
 - 1 Gb. of source HTML

Contents

- Goals
- Scientific approach
- Design and implementation
- Current results

Current results

- Official results (beta version, porn light filter)
 - Sample of 4824 Web pages (891/3933)

Predicted	Harmful	Harmless	Total
Actual			
Harmful	816	75	891
Harmless	4	3929	3933
Total	820	4004	4824
Precision	0.995	0.981	
Recall	0.916	0.999	
F-Measure	0.954	0.990	

Current results

- Official results (beta version, porn light filter)
 - Highlights
 - effectiveness value = 0.916
 - over-blocking value = 0.001

Current results

- Unofficial results
 - Light filter (porn) improved
 - Heavy filter (porn)
 - Slight (untested) improvement due to
 - Bigger feature space
 - NP and NE recognition