Text Filtering in POESIA A General Introduction

Mark Hepple & Neil Ireson Sheffield University

Internet Pornography (2003)

Volume of material is immense:

- 4.2 million websites (12%)
- 372 million pages
- 68 million search engine requests/day (25%)
- 1.5 billion downloads/month (35%)

Pornographers Tricks

- *Cyber-squatting*: buy legitimate sounding domain names for porn sites
 - whitehouse.com (c.f. whitehouse.org),
 civilwarbattles.com, tourdefrance.com
- *Mis-spelling*: buy domain names that are mis-spellings of important sites for porn e.g. googlle.com

Pornographers Tricks (cont)

- *Doorway scams*: non-porn pages designed for indexing by search engines

 user accessing page is redirected to porn site
- *Porn-napping*: buy lapsed domains for porn sites (sell back to ex-owner for large fee)
 e.g. moneyopolis.org: money management site for kids by Ernst & Young

Current Filtering Systems

- Blacklists
 - addresses of 'unacceptable' sites
- Keywords
 - block pages containing certain words/phrases

BUT ...

- many words ambiguous, meaning depends on context
 - inclusion (resp. exclusion) of these terms as keywords results in over (resp. under) blocking
 - much offensive content in image form
- need for effective filtering based on *content*

Text filtering in POESIA

- POESIA: multiple filters, including filters for image & textual content
- Textual content filters use NLP methods to enhance recognition of categorisation relevant uses of terms
- Textual content filters are *language specific* for English, Italian, Spanish (+ limited for French)
- Approach requires a *language identification* component

Language Identifier

- Models probability distribution of 3character n-grams
 - Parallel language text
 - 11 European languages (~560 Mbytes total)
 - Smoothing: Good-Turing Estimation
 - Term (Feature) selection: Information-Gain
 - Similarity metric: Entropy measure

Language Identifier Evaluation

- Non-porn pages = $\sim 3\%$ error
- Porn pages = $\sim 2\%$ error
- Pages with low amount of text
 - n-grams <30 (3.5% of pages): ~45% error</p>
 - 30< n-grams <100 (6.5% of pages): ~12% error
 - $-200 \le n$ -grams (80% of pages) ~0% error
- Problems
 - Imperfect & impure language use
 - Specific terminology
 - Domain specific identifier
 - Proper names

Language Specific Text Filters

- NLP based filtering quite computationally expensive, useful to provide both two filtering modes:
 - Light: gives fast accept/reject for simple cases
 - Heavy: applies more complex methods for difficult cases, i.e. cases not resolved by light filtering
- Light Filters
 - Statistical "bag-of-word" models
 - Stemming, term-selection, term-weighting...
- Heavy Filters
 - NLP Techniques
 - Machine Learning Techniques
 - Localised context

Data Collection for Text Filtering

- Both porn/non-porn data collected automatically by spidering from the Google directory
- Approach has advantages/disadvantages
 - Pros:
 - large dynamic sample of web
 - 72 specific language categories
 - Cons:
 - biased sample
 - misclassified pages