[image: image7.png]
ISLE Computational Lexicons
Working Group

WP4

MILE-Tool Documentation

Preliminary report

February 2001

Authors

Nuria Bel, Marta Villegas

GilcUB, Barcelona, Spain

MILE-Tool Documentation

Index

2General Description:

3Tool Facilities

3User profiling:

3Quering data

3Loading data

3Dumping data

4dB DTD mappings

4Admin Tool

4Software specifications

4Building a dB out of a DTD

5Some sample screens

General Description:

This project provides with a functional tool prototype able to manage computational lexicons to be generated under the specifications of the ISLE project.

In this project we aim at cover different objectives:

· to provide means of browsing the sample lexicons encoded according to the standards suggested by ISLE.

· to show an actual implementation of a multilingual lexicographic station in a relational dB with all the well known facilities that these engines provide and

· to describe the implementation of a conceptual model for lexical description into a dB.

These objectives led us to define MILE-Tool as having two main components: the dB module and the DTD module. The former has to do with the interfacing with the dB. The latter has to do with the mapping of the conceptual model expressed by the DTD into the relational dB and constitutes the essential part of the whole Tool.

This Tool, therefore, is defined in such a way that the user is able to query not only the lexical data it contains but also the mapping of the DTD into the dB as well as the structure of the dB. (See Building the dB section for further details).

This project lays on the idea that the information contained in a DTD which describes a conceptual model expressed in terms of Entity-Relationship Model can be used to automatically build up a relational dB.

Actually, this dB has been set up in an automatic way out of the Parole/Simple Genelex DTD as described in Annex I: Building a dB out off a DTD . We have not followed a static approach to dB construction but rather a dynamic one. This means that the dB is not defined once and left fossilized but rather it has been designed in an automatic way. Thus, if we modify or even change the DTD, new tables and fields will be created but most of the scripts will still remain the same.

Since the prototype is to be downloaded and customized according to in-house needs if desired, the software requirements and specifications have been designed according to open source criteria (see Software Specifications section for further details).

Tool Facilities

This Tool prototype provides standard dB facilities for data managing. These include:

User profiling:

The prototype allows to define different user profiles. By default, there are three different users: Visitor, Lexicographer, and Root.

Different users have different privileges. Thus Visitor users only have select privileges, Lexicographer users have select, insert and drop privileges and Root users have all privileges.

Visitor users and Lexicographer users are only allowed to access MILE Tool. Root users can access both the MILE Tool and the Admin Tool. (see Admin Tool).

Querying data

The prototype allows to query data in different ways:

· SQL queries: the user can address the dB using SQL statements.

· dynamic forms: the tool allows the user to choose the desired objects of the DTD and dynamically builds user friendly forms to query the relevant tables and fields. The user needs to know nothing about the structure of the dB and the data he or she fills in the forms is loaded into the relevant tables.

· static forms: the tool also provides a set of sample user-friendly forms which can be tested and downloaded if desired.

Loading data

Data can be loaded into the data base in different ways:

· SQL statements: data can be loaded using SQL statements. This allows loading data from external text files if desired.

· From SGML files the tool provides with a script that allows to load data from SGML files containing DTD-conformant data.
· Dynamic forms: the tool lets the user to select desired DTD objects and dynamically build user-friendly forms to load data into the dB. This allows the user to load data into the relevant tables and fields without knowing the structure of the dB.
· Static forms: the tool provides with a set of sample user-friendly forms for loading data.
Dumping data

Again, the prototype allows dumping data in different ways described as follows:

· SQL statements: the user can extract desired data using SQL statements.

· via DTD: the prototype provides means to extract data out off the dB according to DTD criteria. Thus, once the user selects the desired DTD element, the Tool makes the necessary calculations to extract data from the relevant tables/fields. In this case, data can be dumped in SGML format if desired.

dB DTD mappings

The tool provides plenty of information concerning table/fields definitions and the mappings between DTD elements and relevant tables. This prototype allows the user to see, at any stage, the relevant mappings from the DTD elements into dB tables and vice versa.

Since the dB structure is created in a systematic procedural way according to the information included in the DTD, most of the software is not dB dependent but rather DTD dependent. This means that most of the scripts are not static scripts but rather dynamic scripts which are generated according to the DTD involved.

Admin Tool

The Admin Tool allows Root users to access mysql database and therefore they can add and modify all Grant tables. This means that Root users can add new users and new user’s privileges. Any change in the grant tables is immediately collected by the Tool. Thus whenever a new user is added this is included in the user’s pop-up menu.

The Admin Tool also allows root users to connect to all databases in grant tables.

Software specifications

The project intends to provide with a dB prototype implemented using well supported open source resources which can be easily portable.

· Database server: 3.23.16-alpha version of MySQL downloaded from www.mysql.com
· Perl support for MySQL: Perl support for MySQL is provided by means of the `DBI'/`DBD' client interface. The Perl `DBD'/`DBI' client code requires Perl 5.004 or later. Perl `DBI'/`DBD' modules can be downloaded from www.symbolstone.org/technology/perl/DBI/index.html or www.perl.com/CPAN/modules/by-module/DBIx/i. among others. You should get the `Data-Dumper', `DBI', and `Msql-Mysql-modules' distributions and install them in that order.

· Web Server: Version 1.3 of the Apache web server which can be downloaded from www.apache.org/httpd.

· Perl support for the Apache server: mod_perl is the Apache/Perl integration project which brings together the full power of the Perl programming language and the Apache HTTP server. mod_perl can be downloaded from a CPAN site under modules/by-module/Apache.

Building a dB out of a DTD

BuilDB is a perl script that using the perlSGML modules reads a DTD and generates three output files: createDB, tabularDTD and loadDB.

createDB file contains the relevant CREATE TABLE instructions. This output file can be edited to make the desired modifications (shorten or length the fields, delete not used tables/objects,...) and can be executed by MySQL by typing 'mysql> data_base_name < createDB' from the shell.

tabularDTD is a perl script that reads an sgml file and generates a series of 'tabular' files. These tabular files contain all 'dtd conformant' data in the sgml file in a 'dB style'.

loadDB file contains all LOAD DATA INFILE 'tabular.file' INTO TABLE table SQL statements so that data in tabular files are correctly loaded into the dB.

BuilDB reads the DTD looking for all elements and classifies them into main, content, pcdata or empty elements according to the following conventions:

· Main elements are those having an ID-type attribute.

· Content elements are those with attribute definition but no ID-type attribute.

· Pcdata elements are those with no attribute definition but with a PCDATA content definition.

· Empty elements are those with no attribute definition nor PCDATA content definition.

For each element, BuildDB will create a corresponding table. Additional tables can be also created. These are list tables. List tables are created whenever an element includes an IDREFS-type attribute (that is, an attribute valued as a list of IDs). List tables are to relate the element with the list of values the attribute is pointing to.

For each attribute in the element's ATTLIST description a corresponding field is defined according to attribute description in the DTD.

This procedure allows to define dB interfacing scripts in a dynamic way. Since dB structure is generated in a procedural way, dB interface scripts can also be generated in such a way. This guarantees that potential users of the Tool can build and customise their own tool according to their own needs.

Some sample screens

[image: image1.png]
Fig. 1 The user is asked to identify himself

[image: image2.png]
Fig. 2 Once identified, the user selects a lexicon

[image: image3.png]
Fig. 3 Dumping data options

[image: image4.png]
[image: image5.png]
Figs 4 and 5: dynamic forms for queering data

[image: image6.png]
Fig 6: Result screen of a query-form

