
Lexical Entry Tool (Software)
and

Accompanying Documentation

Deliverable D4.1
ISLE Computational Lexicon Working Group

Authors

Nuria Bel1, Marta Villegas1, Montserrat Marimon1

1: gilcUB, Barcelona, SPAIN

IST-1999-10647 ISLE Page 2 of 40

IST 1999-10647 ISLE
Deliverable Identification Sheet

Project ref. no. IST 1999-10647 ISLE

Project acronym ISLE

Project full title International Standards for Language Engineering

Security (distribution
level)

Restricted

Document name D4.1 Lexical Entry Tool (software) and Accompanying
Documentation Prototype

Type Deliverable

Status & version Final Version

Number of pages 40

WP contributing to the
deliverable

Task responsible gilcUB

Other contributors

Author(s) N. Bel, M. Villegas, M. Marimon - gilcUB

DOCUMENT EVOLUTION (optional)
Version Date Status Notes

0.2 18/02/2003 Final

IST-1999-10647 ISLE Page 3 of 40

TABLE OF CONTENTS

TABLE OF CONTENTS... 3
0. EXECUTIVE SUMMARY .. 4
General architecture ... 6
The generation module... 8

Tables definition .. 8
Fields definition ... 9

loadSGMLData...12
Customisation module...13
Core web dB interface...14
MILE module ...16

Preliminaries...17
Formal aspects ..17
Simple correspondences ..17
Complex correspondences ...18
Semantic Transfer Conditions..20
Syntactic Transfer Conditions..21

Prototype Tool: Main functionalities & User manual ...26
accessing the prototype tool...26
database info ...27
SQL query...29
Guided Queries ...30
Load data ..32
Delete data..33
Browse lexical units ..34
Browse elements in dB..34
Customize DTD ..35
Search web..36
Search corpus..37

Software Specifications...38
Validation and Assessment ...39
References ..40

IST-1999-10647 ISLE Page 4 of 40

0. EXECUTIVE SUMMARY

This document describes (i) the lexicographic station development platform used to
automatically generate a prototype tool out off ISLE1 guidelines formally implemented
in a DTD, (ii) an actual implementation of the ISLE guidelines expressed in MILE, (iii)
the use of the lexicographic station development platform for generating a prototype
lexical tool for MILE/ISLE guidelines and the functionalities and (iv) the user manual of
the resulting prototype lexicographical station.

The aim of ISLE is to develop, disseminate and promote de facto HLT standards and
guidelines for language resources, tools and products within an international
framework, in the context of the EU-US International Research Cooperation initiative.

In the 'multilingual computational lexicon' area, ISLE has extended EAGLES2 work on
lexical semantics to design standards for multilingual lexicons. The central outcome of
ISLE is to define a general schema for multilingual lexical entry (MILE) that is to be the
basis for a standard framework for multilingual computational lexicons. In addition,
ISLE is to develop a prototype tool to assist the development of multilingual lexical
resources in MILE format.

The aim of this prototype tool is to

(i) exemplify and disseminate the MILE entry using an actual model with
already existing monolingual data,

(ii) assist the development of multilingual lexical resources following MILE
schema,

(iii) make extensive use of already existing PAROLE and SIMPLE lexicons and
(iv) to eventually test the goodness of the guidelines by using a real scenario.

Three aspects crucially determined the definition of the lexicographic station
development platform we are describing here:

(a) MILE is built as an additional layer on top of monolingual descriptions. In most
cases, these monolingual layers already exist and need to be reused.

(b) MILE is a general schema liable to be customized according to in-house needs
in real scenarios.

(c) the definition of the prototype tool an the definition of MILE itself were parallel
tasks. This means we had not a final model while developing the tool.

This situation led us to define a lexicographic station development platform that
guarantee the portability of the final prototype. The lexicographical station development
platform, has been designed as a Tool builder which parses any DTD describing an
Entity Relationship model in order to automatically (i) map the DTD into a relational dB
and (ii) build up a user-friendly interface able to cover the most common requirements
of a lexicographic station and (iii) to exemplify, test and validate the goodness of the
MILE model in a real scenario, that is, reusing already existing monolingual resources
such as PAROLE and SIMPLE lexicons.

1 International Standards Lexical Encoding. See Ref??
2 ‘Expert Advisory Group in Lexical Standards’ Ref?? .

IST-1999-10647 ISLE Page 5 of 40

This strategy will guarantee the portability of the final prototype to the final
specifications, the portability of already existing resources (i.e. reusability of already
existing monolingual resources) and, finally, the portability to specific applications thus
allowing for customization.

This project lays on the idea that the information contained in a DTD which describes a
conceptual model expressed in terms of Entity-Relationship Model can be used to
automatically build up a relational dB. This ' DTD approach' allows easy customization.
The user no longer has to accommodate to the structure and insights of the
lexicographic tool but rather the tool accommodates to the requirements and
idiosyncrasies of the user needs.

Since the resulting prototype tool is seen as an exemplification, it has been designed
as a self-explaining tool and, therefore, the user can consult the mappings between the
dB and the DTD and is provided with a set of browsing facilities that allow to
understand the model behind.

From now on this document is organized as follows.

Section 1 describes the general architecture of the lexicographical station platform
development.

Section 2 describes the generation module and the ‘load sgml data’ module. As we will
see, the generation module is responsible to create a relational database out of a DTD.
The ‘Load sgml data’ module guarantees that already existing lexical resources can be
directly loaded into the database. Since, multilingual correspondences defined in MILE
relay on monolingual descriptions which, in most cases, may be already existing
resources, this ‘load sgml’ module becomes crucial.

Section 3 deals with the customization module of the prototype tool.

Section 4 describes the general architecture of core interface module of the prototype
tool.

Section 5 describes an actual implementation of the MILE (Multilingual ISLE Lexical
Entry) module.

Section 6 contains the software specifications for the resulting prototype tool.

Section 7 describes the main functionalities and user’s manual for the prototype tool.

Section 8 reports our experience using the prototype tool. As reported there, we have
used the prototype tool to load already existing monolingual sgml data and to encode
new entries.

IST-1999-10647 ISLE Page 6 of 40

General architecture

The lexicographical station development platform is a prototype tool generator that
reads and parses a sgml/xml DTD and generates a relational data base that can be
managed with a core web dB interface.

The lexicographical station development platform guarantees that already existing
monolingual resources expressed in sgml/xml can be easily reused and ported by and
to MILE.

Basically, the lexicographic station development platform includes a generation
module, a customization module and a core interface module as exemplified below:

The generation module automatically generates a relational dB out off a DTD. The
project benefits from the fact that a conceptual model expressed in terms of Entity-
Relationship model can be easily mapped into a relational dB.

The customisation module allows to modify certain aspects of the dB at the time that
allows overcoming some of the well known shortcomings of sgml DTDs such as typed
references and type declaration.

The core interface module consists of a series of scripts that allow managing the dB
with a friendly interface. Although user requirements differ from site to site according to
in-house needs, the tool comes equipped with a set of basic functionalities. Our
experience in past lexicographic projects led us to define an accurate list of
requirements which include (i) query and browsing facilities, (ii) import, export and
migration of data, (iii) easy encoding of new data (iv) test and validation of both the
data and the model, (v) customization facilities, and (vi) lexicographic tools such as
type definition, class extraction and statistical facilities. As in the case of the

IST-1999-10647 ISLE Page 7 of 40

generation module, this core interface module operates upon the model expressed in
the DTD in order to make the necessary calculations to access, manipulate and display
data from relevant tables.

ISLE defines the multilingual layer as an additional layer on top of the monolingual
ones. Thus, whereas monolingual layers collect morphological, syntactic and semantic
information needed to describe monolingual lexicons, the multilingual layer defines
correspondence objects that describe relations between monolingual representations.
This approach guarantees the independence of monolingual descriptions at the time
that allows the maximum degree of flexibility. This structure can be represented as
follows:

As we can see from figure above, the dB generator needs to generate at least two
monolingual databases and one bilingual database and the web interface needs to
address three different databases. The overall architecture of the system can be
represented as follows:

IST-1999-10647 ISLE Page 8 of 40

The generation module

The generation of the data base is done by means of a perl script that, making
extensive use of the perlSGML module, reads the DTD and generates tow output
scripts:

�
 BuildDB: is an output file containing the relevant ‘CREATE TABLE’ instructions.

This output file can be edited to make the desired modifications (shorten or
length the fields, delete tables,...) and can be executed by MySQL by typing
'mysql> data_base_name < script.file'

�
 LoadSGMLData: is a perl script that reads an sgml data file and distributes the

data it contains into a series of tabular files which correspond to the tables in the
dB. TabularDTD is sensitive to the hierarchic relations between sgml elements in
order to keep track of the foreign keys involved in each content element (see
section 3.2 for further details). This script also generates the relevant ‘ INSERT’
statements and is responsible of loading the tabular files in the corresponding
tables.

Tables definition

BuilDB reads the DTD looking for all elements and classifies them into main or
content elements. Main elements are top elements having an ID-type attribute.
Content elements are embedded elements without an ID-typed attribute. For each
main element, BuildDB creates a corresponding main table. Two additional type of
tables can be also created. These are content tables and list tables. Content tables
are created whenever an element has a content element. List tables are created
whenever an element includes an IDREFS-typed attribute (that is, an attribute valued
as a list of IDs).

IST-1999-10647 ISLE Page 9 of 40

The name of the tables derive from the name of the elements thus, main tables have
the same name as the corresponding main object, content tables names result of the
concatenation of the parent and the content element and, finally, list table names result
from the concatenation of the element and the IDREFS-type attribute name. This can
be see in Table 1 below.

Table 1: Tables definitions

Fields definition

Attributes in the element' s ATTLIST description of elements are directly mapped into
fields in the corresponding table definition according to the following criteria.

sgml declaration sql definition addiditional list table

ID varchar(80)

IDREFS varchar(80) list

NUMBER integer(10)

NUMBERS integer(10)

CDATA varchar(100)

NUTOKEN varchar(80)

IST-1999-10647 ISLE Page 10 of 40

NUTOKENS varchar(80) list

NAME varchar(80)

NAMES varchar(80) list

Content tables include two additional fields: one corresponds to the table ID and is
defined as an auto increment primary key; the other serves to relate the content
element with the relevant parent element and acts as foreign key.

List tables serve to encode list-typed attributes. They include two fields which are
defined as primary keys. One is defined as ‘id_parent’ and serves to indicate the
element containing the list-typed attribute. The other is defined as ‘id_attibute’ and
serves to indicate the attribute itself. In the table above, we can see the kind of
attributes that generates a list table.

In the following figures we exemplify the mapping of a given element Element as
described in figure 1. In figure 2, we can see how the attributes of ‘Element’ are
mapped into table’s fields. Figure 3 describes the mapping of a content element, in this
case the embedded ConentElement generates a corresponding table which includes a
primary key attribute defined as autoincrement and a foreign key attribute that serves
to relate the content element with its parent element. Finally, figure 4 describes the
mapping of an IDREFS-typed attribute into a list table. In this case, the table consists
only of two attributes defined as multiple primary keys. These keys, serve to relate the
object with each of the values of its list-typed attribute:

<!ELEMENT Element –0- ContentElement>
<!ATTLIST

id ID #REQUIRED
attData CDATA #IMPLIED
attEnum (A|B) A
attIDref IDREF #IMPLIED
attIDrefs IDREFS #IMPLIED>

Figure 1. sgml description for Element

Field Type Null Key Default Extra
Id Varchar(5) PRI
AttData Varchar YES NULL
AttEnum Enum(A|B) A
AttIdRef Varchar(5) YES MUL NULL

Figure 2. Main table definition for Element

Field Type Null Key Default Extra
Id Varchar(5) PRI 0 Auto

increment
Id-
parent

Varchar(5) MUL

…. … … … … …

IST-1999-10647 ISLE Page 11 of 40

… … … … … …

Figure 3. Content table definition for ContentElement

Field Type Null Key Default Extra
Id Varchar(5) PRI
Id-
parent

Varchar(5) PRI

Figure 4. List table definition for AttIrefs attribute

IST-1999-10647 ISLE Page 12 of 40

loadSGMLData

Load SGMLdata is responsible for loading data into the database from external sgml
data files. This module is crucial as it ensures that already existing resources can be
easily ported to the database.

LoadSGMLdata is included into the prototype tool as an option. The system allows
browsing local files so that the user can select the relevant DTD and data file to be
loaded. The file is parsed using nsgmls parser in order to validate the data and
generate the output file.

Once the data file is validated, the system works with the resulting output file. This
allows overcoming format and layout aspects that may vary from file to file. Basically
the system performs three main actions: (i) for each kind of element in data file, the
system checks whether the database contains some data in order to set up the auto
increment ids; (ii) all data in the output parsed file is allocated in temporal tabular files,
each file contains data for a given type of element (iii) finally, the relevant insert
instructions are generated taking into account the set of elements included in data file.
The overall procedure can be represented as follows:

browsing
local files

sgml file
dtd file

create
validated sgml
output file

validated
output file

generate ids

access to
database

ids set up

generate
tabular files

generate insert
instructions

tabular files

IST-1999-10647 ISLE Page 13 of 40

Customisation module

In order to overcome some of the well-known shortcomings of DTDs (typed references,
type declaration, inheritance...) the prototype includes a customization module.

This customization module serves a double purpose. On the one hand, it allows
expressing type constraints that cannot be expressed in sgml DTDs. These constraints
will ensure the goodness of the model. On the other hand, it becomes crucial to define
the ‘domain’ of a given element. In any DTD describing an entity relationship model,
relations among elements can be established as ‘vertical’ or ‘horizontal’ relations.
Vertical relations are the standard hierarchical relations between an element and its
content elements. Horizontal relations are those established by IDREF or IDREFS
typed attributes that serve to relate a given element with some other element of the
model. Both, vertical and horizontal relations between elements define the domain or
scope of an element. In the following example we describe the domain of a given
element Element 2 containing one IDREF attribute typed as element 5. In this example,
the domain for our Element 2 includes all nodes dominated by Element 2 plus Element
5 domain

Top
Element 1
Element 2

Element 2.1
Element 2.1.1
Element 2.1.2

Element 2.2
Element 2.3

Element 3
Element 4
Element 5

Element 5.1

Figure 6 Scope for Element 2

 As we will see in next section, the prototype tool comes equipped with some basic
functionalities. These functionalities are better tuned if typed references are explicitly
established in this customization module.

Typed references are stored in an additional table named ‘ relations’ Essentially, this
table collects the element/table containing an IDREF(S) attribute, the attribute itself and
the allowed element/table:

table attribute related table

tableA attributeA elementB

In this example the system knows that the attribute ‘attriibuteA’ of the element/table
‘tableA’ can only take as value Ids of elements that belong to ‘elementB’ type.

IST-1999-10647 ISLE Page 14 of 40

Core web dB interface
Besides tables definition described in previous section, the system provides with a user
interface able to manage the dB in a friendly and explanatory fashion.

The aim of the tool is to provide with a minimum set of build in functionalities that cover
the most common user’s requirements of a prototypical lexicographic station. The
explanatory and dissemination purpose of ISLE project, lead us to additionally include
a number of functionalities that serve to know and understand the resulting prototype
tool.

All this is to be achieved without facing lexicographers with the technicalities of a dB.
Lexicographers are only be required to know the model expressed in the DTD and,
therefore, they operate upon the elements defined in the DTD. It is the system that
makes the necessary calculations to access and manipulate data from the relevant
tables.
The prototype tool, therefore, is designed as DTD dependant rather than dB
dependant. Thus, the system includes a good number scripts that taking the DTD
structure as input make the necessary calculations to operate on the relevant tables in
the dB. Essentially these facilities include (i) loading and downloading data from and
into sgml files, (ii) making forms to manage the dB and (iii) learning about the model.

The schema above has been implemented as a library of dtd/dB basic methods that
make extensive use of a set of basic functionalities.

IST-1999-10647 ISLE Page 15 of 40

download data in sgml/xml fashion. The user is given a tree representation of the DTD
and selects one element. The system, then makes the necessary calculations to
extract data in sgml/xml format for the desired element.

define forms to extract or load data. The system allows defining online forms to
manage the database. The first step in this process is to define the domain of the form.
This is the point where the customization process explained above becomes crucial.
The user selects the top most elementhe/shewants to include in the form. The system
calculates the domain of the selected element by taking into account the horizontal and
vertical relations it participates in. Once this is done, the system displays a form with
the relevant fields. Fields in the form are defined following attribute’s definition in the
DTD. Thus, CDATA attributes translate into text fields, ENUM attributes translate into
pop-up fields, customized IDREF attributes translate into pop-up menus, and IDREFS
attributes translate into multi valued scrolling list fields. Once the user has filled in the
desired data, the tool makes the necessary calculations to build up the relevant sql
query.

Browsing the data and the model. The tool contains a good number of facilities to
browse both the data and the model and its mapping into the database. The prototype
allows the user to see the data in a DTD fashion and benefits from the fact that it
knows the relational component of the database since this is formally expressed in the
DTD.

As already mentioned before, all functionalities above are DTD dependant. This means
that html code is generated taking into account the information in the DTD. That is, the
system reads the DTD in order to know (i) what kind of elements/tables are involved in
each action the user wants to perform, (ii) how are these elements tables described
and (ii) what sort of relations these elements/tables are involved in. This strategy
guarantees that the web dB interface can be used independently of the dB behind.

IST-1999-10647 ISLE Page 16 of 40

MILE module
As already mentioned before, ISLE defines the multilingual layer as an additional
dimension on top of the monolingual ones. Thus, whereas monolingual layers collect
morphological, syntactic and semantic information needed to describe monolingual
lexicons, the multilingual layer defines correspondence objects that describe relations
between monolingual representations. These approach guarantees the independence
of monolingual descriptions at the time that allows the maximum degree of flexibility
and consistency in reusing existing monolingual resources to build new bilingual
lexicons.

Bilingual correspondences between source and target unit elements can be rather
complex and may involve different transfer conditions. In these cases, the bilingual
layer allows to establish tests and/or actions upon monolingual descriptions in source
and target lexicons respectively. Tests and actions are constraints or enrichments on
monolingual descriptions needed only when moving from one language to another.
More exactly: tests specify a condition in source language under which a given
translation is valid; and, actions specify a condition in the target language under which
a given translation is valid.

These transfer conditions include semantic transfer conditions and syntactic transfer
conditions which can be quickly summarized as follows:

Semantic transfer conditions:

• Argument correspondences between source and target predicates.
• Addition of semantic feature(s) to source or target SemUs.
• Addition of semantic feature(s) to an argument of source or target predicate.

• Syntactic transfer conditions:

• Constrain the head of the syntactic description by adding syntactic or semantic
features.

• Link source and target positions (i.e. syntactic arguments)
• Adding a syntactic positions to source or target syntactic descriptions.
• Changing the optionality status of a given syntactic position.
• Prohibit the realization of a given syntagma in a given syntactic position.
• Adding semantic or syntactic features to syntagmas filling a given syntactic

position.
• Lexicalizing the syntagma filling a given syntactic position.

The kind of tests and actions involved in each correspondence depends on the words
involved in each case and on the kind of information included in both source and target
lexicons. More crucially, the set of transfer conditions involved in a given bilingual
correspondence operates upon descriptive elements that, in most cases, vary from unit
to unit.

This scenario makes it impossible to define static fixed forms (or templates) to encode
bilingual correspondences. Notice that the number and kind of transfer conditions, and
the number and kind of objects these transfer conditions apply on, will change from
correspondence to correspondence depending on the kind of monolingual descriptions
we are trying to link.

The complex nature of bilingual correspondences led us to define MILE module as an
object and the list of admissible transfer conditions as a set of methods that enlarge the
initial MILE object in order to collect the desired information.

In the simplest case, MILE object establishes binary relation between a source
semantic unit and a target semantic unit. In the most complex case, this object is
enriched with a set of relevant constraints. In the following lines we describe in much
more details the MILE object

IST-1999-10647 ISLE Page 17 of 40

Preliminaries

• the bilingual layer is a set correspondences between semus of different
monolingual lexicons.

• the syntactic descriptions of involved semus belong to monolingual lexicons.
Thus, whenever a correspondence between two semus is established at the
bilingual layer, by default, all syntactic information from monolingual layers is
' inherited' :

• The bilingual layer allows establishing TEST & ACTIONS upon these inherited
syntactic descriptions in source and target lexicon (respectively).

TESTS & ACTIONS are constraints/enrichements on monolingual descriptions
needed only when moving from one specific language to another. More exactly:

TESTS specify a condition in the source language under which a given
translationis valid.

ACTIONs specify a condition in the target language under which a given
translation is valid.

Formal aspects
Bilingual correspondences can be typed as follows:

• simple correspondences: when no transfer conditions are involved. They can be
further specified or classified as fully equivalent or partial equivalent,

• complex correspondences: when transfer conditions are involved. Transfer
conditions include: Syntactic transfer conditions and Semantic transfer
conditions.

In the following we describe how the model formally deals with simple and complex
correspondences.

Simple correspondences

Simple correspondences relate one source semu with one target semu without
implying transfer conditions, additional information can be included in order to further
specify the correspondence.

Simple correspondences are formally expressed as CorrespMultUsem elements
defined as follows:

CorrespMultUsem

• commentaire

• id

• pointdevue

• statutcorr

• usemlangue1

IST-1999-10647 ISLE Page 18 of 40

• usemlangue2

Complex correspondences

Complex correspondences are formally expressed as CorrespMultUsem or
CorrespMultUsynUsem elements according to the kind of transfer conditions involved.

Essentially, transfer conditions include semantic transfer conditions and syntactic
transfer conditions defined as follows

Semantic Transfer conditions include:

• argument correspondence (see argument matching)

• addition of semantic features (see adding semantic features)

• addition of semantic features to arguments (see adding sem feat to arguments)

The resulting CorrespMultUsem element will derive from the combination of relevant
semantic transfer conditions involved in each semu-semu correspondence.

CorrespMultUsem

• commentaire

• id

• pointdevue

• statutcorr

• usemlangue1

• usemlangue2

• ajoutetraitsemlangue1

• ajoutetraitsemlangue2

• modifieurlangue1l

• modifieurlangue2l

correspmultargarg

• cheminarglangue1

• cheminarglangue2

• commentaire

• informearglangue1l

• informearglangue2l

IST-1999-10647 ISLE Page 19 of 40

syntactic transfer conditions include:

• constraint the head (see constraint head)

• matching positions (see match positions)

• addition of a syntactic position (see add position)

• constraint a position by

o changing is optionality status' (see constraint optionality)

o prohibit the realization of a syntagma (see prohibit syntagma)

o lexicalizing its realization (see lexicalize position)

o adding semantic feature(s) to a syntagma (see add sem feat syntagma)

o adding syntactic feature(s) to syntagma (see add synt feat syntagma)

The resulting CorrespMultUsyn element will result from the combination of relevant
syntactic transfer conditions involved:

CorrespMultUsyn

• commentaire

• id

• pointdevue

• statutcorr

• usynlangue1

• usynlangue2

• constrdescrusyn1

• constrdescrusyn2

• reecritlexicalisesyntl1

• reecritlexicalisesyntl2

• ajoutepositionusynl1

• ajoutepositionusynl1

correspMultPosPos
cheminPosLangue1

cheminPosLangue2

IST-1999-10647 ISLE Page 20 of 40

Bilingual correspondences may involve semantic and syntactic transfer conditions. In this case,
these are expressed via CorrespUsynUsem objects which include semantic transfer conditions
and syntactic transfer conditions defined as follows:

correspmultUsynUsem

• commentaire

• id

• pointdevue

• statutcorr

• correspmultusyn (see above)

• correspmultusem (see above)

Semantic Transfer Conditions

argument matching
This allows establishing correspondences between source/target arguments and to
restrict/enrich the semantic description of involved arguments. Two methods are
foreseen:

• match source/target arguments

• match & specify source/target arguments

CorrespArgArg
• sourceaccesspath

• targetaccesspath

CorrespArgArg

• sourceaccesspath

• targetaccesspath

• sourcearginforml

• targetarginforml

addition of semantic feature(s) to argument
This allows to select and specify an argument by adding semantic features.

IST-1999-10647 ISLE Page 21 of 40

&add_sem_feature_argument($predicate,$argument_number,@sem_features)

Modifieur

• commentaire

• id

• pred = $predicate

• cheminargmodifie = $argument_number

SelectAndSpecifyArg

• accesspath = $argument_number

• informargl = @sem_features

addition of semantic feature(s)

This allows adding semantic features to source/target semus.

&add_sem_feature_semu($semu,@sem_features)

Syntactic Transfer Conditions

position matching

Allows establishing correspondences between syntactic positions when there is no
isomorphic mapping. (a simplified version of the model is given here: matching
between added positions are not included)

possible examples: like(eng) vs. gustar(sp)

correspMultPosPos

cheminPosLangue1
WayToPosition

• targetposition

cheminPosLangue2
WayToPosition

• targetposition

IST-1999-10647 ISLE Page 22 of 40

constraint head

Allows to constraint the Self element of the syntactic description assigned to semu. As
in most cases the Self element corresponds to the head of the construction we call this
' constraint head' .

DescriptionConstraint

• id

• comment

• example

IntervConsConstraint

addsyntfeaturel = @semfeat

addition of syntactic position

This allows adding a syntactic position to either the source or target syntactic
description. Since positions include adjuncts, modifiers can be also added if required.

These new position elements may already exist in the monolingual lexicon or not. In
the former case, the user merely needs to select the relevant one. In the later case, the
user has to defined a new one. In any case, all position elements belong to
monolingual lexicons, as they are the inventory of admissible positions for a given
language. The difference is that some positions are only ' relevant' for translation
purposes.

constraint position optionality status

This allows changing the optionality status of a given position:

&constraint_optionality($description,$construction,$position,$status)

IST-1999-10647 ISLE Page 23 of 40

DescriptionConstraint

• id

• comment

• example

ConstructionConstraint
PositionConstraintl

• optionalitymodification

prohibit a syntagma

This allows to prohibit the realization of a certain syntagma in a given position.

DescriptionConstraint

• id

• comment

• example

ConstructionConstraint
PositionConstraintl
SyntagmaConstraint

constraint position lexicalization

This allows to constraint the lexicalization of a given position. In the model,
lexicalixations are defined in terms of LexFeatures. LexFeatures allow specifying the
lexicalization of a syntactic leaf (or of the head of a phrase). The lexicographer is free
to refer to a morphological unit or to a string corresponding to the graphical form of the
lexical unit.

Lexicalization of position only applies for existing positions. Added positions (see
above) can be defined as lexicalized if required.

&lexicalize_position($description,$construction,$position,$syntagma,$lexicalize)

IST-1999-10647 ISLE Page 24 of 40

DescriptionConstraint

• id

• comment

• example

ConstructionConstraint
PositionConstraintl
SyntagmaConstraint

addsyntfeaturel = $lexicalization

add semantic feature to syntagma

This allows to add semantic features to syntagma filling a certain position. It also allows
distinguishing between ' enrichment' and ' force' operations. In the first case the resulting
syntagma is enriched with certain semantic feature. In the later case, the resulting
syntagma is forced to ' bear' the added semantic feature.

&add_sem_feat_syntagma($description,$construction,$position,$syntagma,@semfeat)

DescriptionConstraint

• id

• comment

• example

ConstructionConstraint
PositionConstraintl
SyntagmaConstraint

addsyntfeaturel = @semfeat

add syntactic feature to syntagma

This allows to add syntactic features to syntagma filling a certain position. Syntactic
features may be Closed or Open. Closed syntactic features are those already provided
by the model. Open syntactic features are language dependent and, therefore, defined

IST-1999-10647 ISLE Page 25 of 40

by lexicons for a certain need not covered (or foreseen) by closed features. In any
case, bilingual lexicons may need no new open syntactic features

&add_synt_feat_syntagma($description,$construction,$position,$syntagma,@syntfeat)

DescriptionConstraint

• id

• comment

• example

ConstructionConstraint
PositionConstraintl
SyntagmaConstraint

addsyntfeaturel = @syntfeat

IST-1999-10647 ISLE Page 26 of 40

Prototype Tool: Main functionalities & User manual

In this section we briefly describe the functionalities already implemented in the
prototype tool at the time we provide explanations to be used a user manual.

Unless explicitly stated, all functionalities bellow are DTD-dependent, that is, they
involved on-line html pages that are created according to DTD specifications.

accessing the prototype tool

The access to the prototype tool is done via the temporal address
http://gilc.ub.es/perl/login.pl Most functionalities can be executed remotely, however to
get a full working tool it is recommended to install the prototype in a local server.

The system foresees different kind of users with different kind of privileges. Users are
requested to log in. Visitors of the tool can choose user=visitor and
password=v1s1t0r. This allows them to access all databases (i.e. lexicons) as visitors.
As a general rule, visitor users cannot perform insert and delete instructions.

Once the user name and password are checked, the user can access any of the main
options at the right.

IST-1999-10647 ISLE Page 27 of 40

database info

This option allows browsing the structure of the database and the mappings between
elements in the DTD and tables in the database.

As illustrated in the screen below, two main browsing options are available: (i) browsing
MILE from the dB and (ii) browsing MILE from the DTD. In the first case, the user
selects one table in order to see its description or the corresponding elements in the
DTD. In the second case, the user selects one element from the DTD in order to see (i)
its definition, (ii) the corresponding mappings in the database or (iii) to get a ‘compact
view’ of the element.

The ‘compact view’ option allows to get complete description of elements in DTD. This
description includes the attributes of the selected element, its content structure and the
involved typed references if any. In this case, typed attributes are displayed as links so
that the user can see the complete domain (i.e. vertical relations and horizontal
relations) of the selected element.

IST-1999-10647 ISLE Page 28 of 40

Compact view of element SemU

IST-1999-10647 ISLE Page 29 of 40

SQL query
This option allows quering the database using sql queries. The user can enter a new
sql statement or choose one of the already existing statements. The system also offers
the possibility to get a complete list of tables’ descriptions in the database.

Once, the sql statement has been executed, the user is allowed to store the query for
further uses.

IST-1999-10647 ISLE Page 30 of 40

Guided Queries
This option allows queering the database in a guided fashion. This allows the user to
get information out off the database without knowing any thing about the database itself
or sql language.

The process of building up a final sql query, includes different steps.

Firstly, the system displays all elements in DTD in a tree format. The user can select
the relevant element he/she wants to include in the query. This allows the system
establishing the domain of the final sql query. This domain corresponds to the ‘FROM’
part of the sql query and includes the selected element plus the base children
elements.

Secondly, the system displays a full form for all attributes and content elements (i.e.
base children) of the selected element. The resulting form is sensitive to the description
of attributes in DTD. Thus, ENUM attributes are displayed as scrolling lists fields
containing allowed values while IDREF(s) attributes are displayed as scrolling lists
fields including the list of existing Ids of the relevant element. This is possible provided
the user has previously declared the typed reference using the customization option.

The user has to fill in the form with the desired values. The non-empty fields will
actuate as filters in the resulting sql query. That is, non-empty fields are included in the
WHERE part of the final sql statement.

IST-1999-10647 ISLE Page 31 of 40

Thirdly, the user is required to select the fields he/she wants to get the information
from. This will become the SELECT part of the final sql query:

Finally, the user gets the resulting SQL statement and the corresponding results in a
table format:

IST-1999-10647 ISLE Page 32 of 40

Load data

The prototype includes three different ways to load data into the database: (i) via sql
statements, (ii) from external sgml files and (iii) using already defined forms. In any
case the user needs to have privileges to insert data into database. ‘Visitor’ users do
not have ‘ insert’ privileges, thus they cannot load data into the tool.

The first two options are general and DTD dependent. This means they are part of the
core db interface module that is able to work properly independently of the DTD we are
using. The last option is not DTD-dependent but rather consists of a set of frozen
scripts that allow encoding certain data.

In the first case, the user is redirected to the ‘SQL query’ option previously described.

The second option can only be executed from a local client. In this case, the user can
browse his files system in order to select the DTD and the sgml data file he/she wants
to load. As described before, the system parses the data using ngmls parser in order to
generate the output result. All data is loaded into the database following the procedure
described in section 2.3.

Finally, the third option includes a number of fixed scripts that allow users to load data
using friendly html forms. This means that these scripts are not ‘on-line’ scripts that will
work for any DTD. In this case, the scripts are fixed and specially defined for the
particular purpose of loading specific data (lexical units). The tool, therefore, only
includes a limited number of loading forms that, in the case of monolingual lexicons,
correspond to morphological, syntactic and semantic lexical units and relevant
descriptive elements.

IST-1999-10647 ISLE Page 33 of 40

Delete data
This option allows to delete data from database. The user needs to select the type of
element he/she wants to delete. Then, the system accesses the database in order to
retrieve all instances of that element so that the user can select the desired instance.
Once the user has chosen the instance he/she wants to delete, the system displays the
element with all its children in sgml format and is required to confirm the deletion.

If the user confirms the deletion, the element and all its children elements (this includes
base children and long-distance children) will be deleted from database:

Remember that Visitor users do not have delete privileges.

IST-1999-10647 ISLE Page 34 of 40

Browse lexical units
This option allows getting a complete view of the information encoded in morphological,
syntactic and semantic layers for a given word. The user is requested to enter a word.
The system, then, generates full sgml code for MuS, SynU and SemU lexical units.
This allows having a complete view of lexical information concerning words in database

Again, this option is not DTD-dependent

Browse elements in dB
This option allows browsing information from all elements in DTD. The user needs to
select one element from the DTD. Then, the system retrieves all instances of that
element stored in the database and displays a new scrolling list with all Ids found. The
user selects the desired instance element and gets a complete description in table
format.

The information retrieved includes all attributes of the selected element plus its children
description. As can be seen from the screen above, typed valued attributes are
displayed as links. This allows the user browsing the involved element in order to get a
complete description.

IST-1999-10647 ISLE Page 35 of 40

Customize DTD
Customize DTD allows to declare typed references. The system lists all elements in
DTD containing an IDREF(s) attribute. If IDREF(s) attributes have been already typed,
the system gives the typed value. The user can select desired elements to modify
typed references.

Once the user selects an element, the system displays a complete description of the
element including parent /content information and attributes description. The user is
also allowed to see the mapping of the element into the corresponding table(s) in the
database.

For each IDREF(s) attribute, the system allows defining the type of value (i.e. element)
the implied attribute is required to take. This information will be stored in the additional
table ‘ relations’. As already mentioned, this information is crucial to get an effective
performance of the prototype tool.

IST-1999-10647 ISLE Page 36 of 40

Search web
The tool comes equipped with a simple concordance generator that pushes the search
string to the www. The system uses the Yahoo search engine to retrieve occurrences
of the input string in the www. The retrieved lines are displayed as concordances to
easy the task of lexicographers.

IST-1999-10647 ISLE Page 37 of 40

Search corpus
The prototype tool includes a corpus search engine that allows extracting
concordances and statistical information.

The corpus is stored in the database, using reverse index techniques. The system
allows three main functionalities:

• adding new files to the corpus
• deleting a collection.
• searching facility

The corpus is organized as a series of collections (or sub corpus). Each file belongs to
one or more collections. This allows the user restricting the scope of the search to a
limited number of collections if desired.

As a result of the search option, the system gives some figures about the distribution of
the input string through out the selected collections and displays occurrences in
concordances shape.

For each selected collection, statistical figures include: information about the number of
files and words included in the collection and the absolute frequency and relative
frequency of the occurrence per file.
Concordances are organized into collections and speciy the file they are included in.

IST-1999-10647 ISLE Page 38 of 40

Each database (i.e. lexicon) is assigned one corpus. Thus, if the current database is
the Spanish one, the current corpus is the Spanish one. Up to now and for validation
purposes, the tool includes three different corpus: Spanish, English and Italian.
Spanish and English corpus have been downloaded from ILO (International Labour
Party) textual database. These corpus include more that 4 million words organized into
12 different classes (or collections). The Italian corpus merely contains a version of the
Pinochio story downloaded from the web.

Software Specifications

The prototype is implemented using well supported open source resources which can
be easily portable. Essentially these include MySQL data base server and Apache
server:

Database server: 3.23.16-alpha version of MySQL which can be downloaded from
www.mysql.com.

Perl support for MySQL: Perl support for MySQL is provided by means of the
n’DBI/DBD’ client interface. The Perl ‘DBI/DBD’ client code requires Perl5.004 or later.
Perl DBI/DBD modules can be downloaded from:
www.symbolstone.org/technology/perl/DBI/index.html or
www.perl.com/CPAN/modules/by-module/DBIx/i among others.
You should get the Data-Dumper ,DBI and Msql-Mysql-modules distributions and install
them in that order.

Web Server: Version 1.3 of the Apache web server which can be downloaded from
www.apache.org/httpd.

IST-1999-10647 ISLE Page 39 of 40

Perl support for the Apache server: mod_perl is the Apache/Perl integration project.
mod_perl can be downloaded from a CPAN site under modules/by-module/Apache

Validation and Assessment

The Lexicographical Station Development Platform described in this document has
been successfully used to generate the corresponding relational database out of
Parole/Genelex monolingual and bilingual DTDs.

The core web interface has allowed us loading all Spanish Parole/Simple sgml data
and the Parole/Simple sample data from Italian, English and Catalan. The system has
worked properly and has allowed loading in a very efficient way a great amount of data
stored in sgml data files. This has proved crucial as it allows reusing any already
existing monolingual resources for the ISLE project.

At this moment, our Spanish database contains about 60900 morphological units,
29927 syntactic units and 9924 semantic units. The tool has been used to encode new
entries with no problems. As far as the monolingual part is concerned, the prototype
has proved to perform correctly and efficiently. The complexity of the Parole/Genelex
DTD (with more that 100 elements and 200 tables) and the amount of data loaded led
us to conclude that the generation module, the load sgml module and the web interface
have been largely validated.

Since reusability and monolingual lexicons are essential requirements for MILE, the
efforts devoted to this part of the project are considered well spent.

The Prototype Tool is being used to load English and Italian data for MILE
demonstration. Thanks to our American college Ruth Reeves, some small bugs have
been detected with respect to MILE (i.e. the bilingual part of the system). We are now
working to fix these bugs. Crucially, bugs reported have nothing to do with the ‘DTD-
dependent’ part of the system but rather on the ‘frozen’ part of it. This allows us to
guarantee, that once we get a final version of the bilingual DTD, the system will
perform correctly.

The Platform has been also used to generate a relational database out off a small and
simplified DTD for the bilingual lexicons in Peking project (IST 2000 25338). At present,
we are using the web interface to encode Spanish/English bilingual entries for the
Peking project. Our Peking bilingual database contains 11000 bilingual units and we
expect having 15000 by the end of this year.

IST-1999-10647 ISLE Page 40 of 40

References
Bel, N., Busa, F., Calzolari, N., Ogonowski, A., Peters, W., Ruimy, N., Villegas, M.,
Zampolli, A. 2000. SIMPLE: a general Framework for the Development of Multilingual
Lexicons. In LREC Proceedings, Athens.

Busa, F., Calzolari, N., lenci, A., and Pustejovsky, J. 1999, Building a Semantic lexicon:
structuring and Generating Concepts. In The Third International Workshop on
Computational Semantics, Tilburg, The Netherlands.
Calzolari, N. 1991. Acquiring and Representing Information in a Lexical Knowledge
Base, ILC-CNR, Pisa ESPRIT BRA-3030/ACQUILEX – WP No. 16.

Calzolari, Nicoletta, Lenci, Alessandro, Zampolli, Antonio, Bel, Nuria, Villegas, Marta,
Thurmaier, Gregor., 2001. The ISLE in the Ocean Transatlantic Standards for
Multilingual Lexicons (with an Eye to Machine Translation). In Proceedings of
MTSummiy VIII, Santiago de Compostela, Spain.

Calzolari, N., Mc Naught, J., Zampolli, A. 1996. EAGLES Final Report. Pisa.
Fellbaum, C. 8ed.). 1998. Wordnet: An Electronic Lexical database, Cambridge, MA:
The MIT Press.

Fontenelle, T. 1997. Turning a bilingual dictionary into a lexical-semantic database.
Tübingen: Max Niemeyer, (Lexicographica. Series maior; 79).
GENELEX Consortium. 1994. Report on the Semantic Layer, Project EUREKA
GENELEX, Version 2.2.
Underwood, N., Navarretta, C. 1997. A Draft Manual for the Validation of Lexica. Final
ELRA Report, Copenhagen.

